Студенческая работа № 56837. Контрольная Химия задачи (во всех n=10)
Учебная работа № 56837. Контрольная Химия, задачи (во всех n=10)
Количество страниц учебной работы 13 Содержание Тема 1.
1.1. Определить абсолютное давление в паровом котле, если манометр показывает (0,2+0,02n) а атмосферное давление равно 755 мм.рт.ст. 1.2. Разрежение в газоходе парового котла, измеряемое тягомером, равно (15+ +n) мм. вод. ст. Определить абсолютное давление газов, если показание барометра 730 мм рт. ст., и выразить его в МПа. 1.3. В баллоне емкостью 40 л находится кислород при давлении (100 + n) кгс/см2 по манометру. Температура кислорода 25 °С, атмосферное давление равно 745 мм рт. ст. Определить массу кислорода и его плотность
1.6. Сосуд емкостью V = 10 м3 заполнен углекислым газом. Определить абсолютное давление в сосуде, если масса газа равна (1 + n) кг, а температура равна 27 °С.
1.8. Плотность воздуха при нормальных условиях ?н = 1,293 кг/м3.Чему равна плотность воздуха при абсолютном давлении p = (1,5 + n) МПа и температуре t=(20 + n) °С?
2.1. Объемный состав газообразного топлива следующий H2 = (10 + n) %, CH4=(90 – n) %. Определить среднюю молекулярную массу и газовую постоянную смеси.
2.4. Массовый состав смеси следующий СО2 = 18 %; O2 = n %; N2 = (82 – n) %. До какого давления нужно сжать эту смесь, находящуюся при нормальных условиях, чтобы при t = 180 °C 8 кг ее занимали объем 40 л? 2.5. Анализ продуктов сгорания топлива показал следующий объемный состав CO2 = 12,2 %; O2 = 7,1 %; CO = n %; N2 = (80,7 – n) %. Найти массовый состав газов, составляющих продукты сгорания.
2.6. В резервуаре объемом 10 м3 находится газовая смесь, состоящая из n кг кислорода и (40 – n) кг азота. Температура смеси равна 27 °С. Определить парциальные давления компонентов смеси.
2.7. Плотность смеси азота и углекислого газа при давлении 1,4 бар и температуре (45 + n) °C равна 2 кг/м3. Определить массовый состав смеси.
3.1. Вычислить среднюю массовую теплоемкость при постоянном давлении Срm для СО2 в интервале температур от t1 = 200 °С до t2 = (500 + 10n) °С. Необходимые для расчетов зависимости даны в приложении.
3.2. Найти среднюю массовую теплоемкость при постоянном объеме Сvm для воздуха в интервале температур от t1 = 400 °C до t2 = (700 + 10n) °C.
3.3. Воздух в количестве 5 м3 при абсолютном давлении Р1 = 0,3 МПа и температуре t1 = 25 °С нагревается при постоянном давлении до t2 = (100 + 2n)°С. Определить количество теплоты, подведенной к воздуху, считая С = const. 3.4. В закрытом сосуде объемом V = 300 л находится воздух при абсолютном давлении Р1 = 3 кгс/см2 и температуре t1 = 20 °С. Какое количество теплоты необходимо подвести для того, чтобы температура воздуха поднялась до t2 = (120 + n) °С? Задачу решить, принимая теплоемкость воздуха постоянной, а также учитывая зависимость теплоемкости от температуры. Определить относительную ошибку ?, получаемую в первом случае. Проанализировать результат (см. 3.16).
3.5. Воздух охлаждается от t1 = (1000 + 30n)°C до t2 = 100 °C в процессе с постоянным давлением. Какое количество теплоты теряет 1 кг воздуха? Задачу решить, принимая теплоемкость воздуха постоянной, а также учитывая зависимость теплоемкости от температуры. Определить относительную ошибку ?, получаемую в первом случае. Проанализировать результат.
4.1. В сосуд, содержащий 5 л воды при температуре 20 °С, помещен
электронагреватель мощностью (500 + 10n) Вт. Определить, сколько времени потребуется, чтобы вода нагрелась до температуры кипения 100 °С. Потерями теплоты в окружающую среду пренебречь. 4.2. В котельной электростанции за 10 ч работы сожжено (100 + 10n) т каменного угля с теплотой сгорания Qрн = 7000 ккал/кг. Найти количество выработанной электроэнергии и среднюю мощность станции за указанный период работы, если КПД процесса преобразования тепловой энергии в электрическую составляет 22 %.
4.3. Найти часовой1 расход топлива, который необходим для работы паровой турбины мощностью 25 МВт, если теплота сгорания топлива Qрн = (33 + 0,1n) МДж/кг и известно, что на превращение тепловой энергии в электрическую используется только 35 % теплоты сожженного топлива. 4.4. Найти изменение внутренней энергии 1 кг воздуха при охлаждении его от t1 = (300 + 10n) °C до t2 = 50 °C. Учесть зависимость теплоемкости от температуры.
4.7. Найти внутреннюю энергию, энтальпию и энтропию 1 кг азота, если температура его равна (100 + 10n) °С, а давление (абсолютное) 0,6 МПа. Теплоемкость считать независящей от температуры.
5.1. (2 + n) м3 воздуха при давлении 0,5 МПа и температурой 50 °С смешивается с (10 + n) м3 воздуха при давлении 0,2 МПа и температуре 100 °С. Определить давление и температуру смеси. Теплообмен с окружающей средой отсутствует.
5.2. В двух разобщенных между собой сосудах А и В содержатся следующие газы в сосуде А – (50 + n) л азота при давлении p = 2 МПа и температуре tN2 = 200 °C, в сосуде В – (200 + 2n) л углекислого газа при давлении pCO2 = 0,5 МПа и температуре tCO2 = 600 °C. Определить давление и температуру, которые установятся после соединения сосудов. Теплообменом с окружающей средой и зависимостью теплоемкости от температуры пренебречь.
5.3. В сосуде А находится (100 + 2n) л водорода при давлении 1,5 МПа и температуре 1200 °С, а в сосуде В – (50 + 2n) л азота при давлении 3 МПа и температуре 200 °С. Найти давление и температуру, которые установятся после соединения сосудов при условии отсутствия теплообмена с окружающей средой. Учесть зависимость теплоемкости от температуры. 5.4. В газоходе котельной смешиваются уходящие газы трех котлов, имеющие атмосферное давление. Будем считать, что эти газы имеют одинаковый состав (массовый) CO2 = 12 %, O2 = 8 %, H2O = n %, N2 = (80 – n) %. Часовые расходы газов составляют V1 = 7100 м3/ч; V2 = 2600 м3/ч; V3 = 11200 м3/ч, а температура газов соответственно равна t1 = 170 °C; t2 = 220 °C; t3 = 120 °C. Определить температуру газов после смешения и их объемный расход через дымовую трубу при этой температуре. Теплообменом в окружающую среду и зависимостью теплоемкости от температуры пренебречь.
5.6. В газоходе смешиваются три газовых потока, имеющие одинаковое давление, равное 0,2 МПа. Первый поток представляет собой азот с объемным расходом V1 = (8000 + 10n) м3/ч при температуре 200 °С, второй поток – углекислый газ с расходом V2 = (7000 + 20n) м3/ч при температуре 500 °С и третий поток – воздух с расходом V3 = (6000 + 20n) м3/ч при температуре 800 °С. Найти температуру газов после смешения и их объемный расход в общем газопроводе.
6.1. В закрытом сосуде емкостью V = 300 л содержится 3 кг воздуха при давлении p1 = 8 ат и температуре t1 = (20+n) °C. Определить давление (ат) и удельный1 объем после охлаждения воздуха до 0 °C. 6.2. В закрытом сосуде заключен газ при разрежении (p1)в = 6,7 кПа и температуре t1 = (70 + n) °C. Показания барометра – 742 мм рт. ст. До какой температуры нужно охладить газ при том же атмосферном давлении, чтобы разрежение стало (p )в = 13,3 кПа?
6.3. В закрытом сосуде емкостью V = 0,6 м3 содержится азот при давлении (абсолютном) p1 = 0,5 МПа и температуре t1 = 20°C. В результате охлаждения сосуда азот, содержащийся в нем, теряет (105 + n) кДж. Принимая теплоемкость азота постоянной, определить, какие давление и температура устанавливаются в сосуде после охлаждения.
6.4. Сосуд емкостью 90 л содержит углекислый газ при абсолютном давлении 0,8 МПа и температуре 30 °C. Определить количество теплоты, которое необходимо сообщить газу при v = const, чтобы давление поднялось до (1,6 + 0,1n) МПа. Теплоемкость газа считать1 постоянной.
6.6. В установке воздушного отопления внешний воздух при t1 = – 15 °C нагревается в калорифере при p = const до 60 °C. Какое количество теплоты надо затратить для нагревания (1000 + 10n)м3 наружного воздуха? Давление воздуха считать1 равным 755 мм.рт.ст. Теплоемкость воздуха считать1 постоянной. Стоимость данной учебной работы 585 руб.